Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations
نویسندگان
چکیده
A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs), are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to various susceptibility and transmissibility factors, including their spatial distance from infectious individuals. The infectious pressure from infected individuals exerted on susceptible individuals is intrinsic to these ILMs. Unfortunately, quantifying this infectious pressure for data sets containing many individuals can be computationally burdensome, leading to a time-consuming likelihood calculation and, thus, computationally prohibitive MCMC-based analysis. This problem worsens when using data augmentation to allow for uncertainty in infection times. In this paper, we develop sampling methods that can be used to calculate a fast, approximate likelihood when fitting such disease models. A simple random sampling approach is initially considered followed by various spatially-stratified schemes. We test and compare the performance of our methods with both simulated data and data from the 2001 foot-and-mouth disease (FMD) epidemic in the U.K. Our results indicate that substantial computation savings can be obtained--albeit, of course, with some information loss--suggesting that such techniques may be of use in the analysis of very large epidemic data sets.
منابع مشابه
Dynamics of infection with multiple transmission mechanisms in unmanaged/managed animal populations.
Deterministic and stochastic models motivated by Salmonella transmission in unmanaged/managed populations are studied. The SIRS models incorporate three routes of transmission (direct, vertical and indirect via free-living infectious units in the environment). With deterministic models we are able to understand the effects of different routes of transmission and other epidemiological factors on...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملUsing a New Method to Incorporate the Load Uncertainty into the SEP Problem
In this paper, a new method is conducted for incorporating the forecasted load uncertainty into the Substation Expansion Planning (SEP) problem. This method is based on the fuzzy clustering, where the location and value of each forecasted load center is modeled by employing the probability density function according to the percentage of uncertainty. After discretization of these functions, the ...
متن کاملApproximating Hidden Gaussian Markov Random Fields
This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random field on a graph of dimensionnwhen the likelihood consists of mutually independent data. We demonstrate that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models. They have the appealing properties that exact samples can be drawn from them, the normalisatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016